
Effect of data weighting on the mature male biomass estimate for Alaskan golden 

king crab  

M.S.M. Siddeek
a*

, J. Zheng
a
, A.E. Punt

c
, and D. Pengilly

b

a* Alaska Department of Fish and Game, Division of Commercial Fisheries, P.O. Box

115526, Juneau, Alaska 99811

b Alaska Department of Fish and Game, Division of Commercial Fisheries, 351 Research

Court, Kodiak, AK 99615

c School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98105-

5020, USA

Abstract 

Size-structured integrated population dynamics models are used to estimate the time-

trajectories of mature male biomass (MMB) of Alaska crab stocks for stock status 

determination and harvest allocation.  Lack of annual biomass surveys makes it difficult 

to assess the status and biomass of the Aleutian Islands golden king crab (Lithodes 

aequispinus). The assessment for this stock relies on commercial catch, size-composition, 

crab bycatch in groundfish (trawl and fish pot) fisheries, effort, catch-per-unit of effort, 

and tagging data to determine the biomass and other stock assessment parameters. The 

effect of data re-weighting (i.e., stage-2 weighting) methods on MMB estimates was 

investigated for this stock in relation to the sensitivity of the trends in MMB to the data 

re-weighting method. The McAllister and Ianelli, and Francis methods were used to re-

weight the size-composition data and Punt‟s method was applied to re-weight the tagging 

data.  Model misspecification (e.g., natural mortality and growth) and the effect of 

omitting a potentially conflicting data source on estimates of MMB were also 

investigated. Re-weighting and model misspecification changed the magnitude of 

estimated values for MMB and their coefficients of variation, but not the MMB trends. 

The stage-2 weighting of tagging data led to slightly lower estimates of MMB. Under the 

robust multinomial likelihood for size-composition data, there was not much of a 

difference between the results of the McAllister and Ianelli method, which ignores 

correlations in residuals for size-compositions, and the Francis method, which explicitly 

accounts for these correlations. Specifically, both re-weighting methods led to similar 

trends, precision, and point estimates of MMB.  The R0 profiles indicated that there was 

information for abundance estimation when all the data were considered under base or 

variable growth increment scenarios. The CPUE indices were more informative about 

absolute abundance than the size-composition data. Hence the issue of data weighting 

should continue to be explored using case studies. 
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Highlights 

 Stage-2 weighting methods for size-compositions and tagging data discussed.

 Effect of stage-2 weighting on MMB explored.

 Stage-2 weighting changed the magnitude, but not MMB trends.

 MMB patterns may depend on the particular data analyzed.



1. Introduction

Due to the difficulties in ageing crustaceans, size-structured population dynamics models,

which model cohorts moving through various size-classes over time, have been used for

assessment of several crustacean stocks (e.g., Chen et al., 2005; Punt et al., this volume;

Zheng et al., 1995). The size-transition matrix, which governs the probability of animals

moving from one size-class to the others, plays an important role in size-structured

models (Hillary, 2011; Siddeek et al., 2016). Tagging and size-composition data provide

information to estimate the size-transition matrix (Punt et al., 1997, 2013). Those data

have been used in combination with catch, bycatch, effort, and indices of abundance

(e.g., catch-per-unit-effort) data within integrated models to estimate quantities of

management importance, such as mature male biomass, fishing mortality, and

recruitment (e.g., Zheng and Siddeek, 2015; Turnock and Rugolo, 2015).  Tagging data

are not available for many crustacean stocks. For those stocks, growth-increment

estimates from related species can be used in addition to size-composition data to

determine the size-transition matrix (e.g., eastern Bering Sea Tanner crab, Stockhausen,

2016).

Francis (2011) provides two main reasons why data weighting is important in stock 

assessment: (1) it can substantially change the results, and (2) it affects all the usual tools 

of statistical inference that are used in stock assessment such as hypothesis tests and 

calculation of confidence intervals. Francis (2011) argues that greater emphasis should be 

placed on mimicking abundance indices than size-composition data when assigning 

weights to data sets. He recommends that process error should be accounted for when 

setting the „stage-2‟ effective samples sizes based on the „stage-1‟ sample sizes when 

fitting to size-composition data.  He emphasizes that stage-1 fitting only accounts for 

observation errors resulting from data measurements and the sampling design. We follow 

his suggestion and estimate stage-2 effective sample sizes for size-composition data and 

extend his advice to re-weighting tagging data following Punt et al. (this volume), while 

keeping the weights assigned to the abundance data fixed at values used in the stock 

assessment (Siddeek et al., 2015). The stage-2 fitting of size-composition and tagging 

data affects the estimation of the size-transition matrix. We apply re-weighting 

procedures to the specific case of the pot fishery for golden king crab (Lithodes 

aequispinus) in the Aleutian Islands region of Alaska (henceforth „AI golden king crab‟).   

Annual stock status determination and catch allocation for AI golden king crab rely 

on fishery-dependent data, such as catch, effort, catch-per-unit-effort, and catch size-

composition given the absence of annual fishery-independent survey data (Pengilly, 

2015). Crab fisheries in the Bering Sea and Aleutian Islands, Alaska, are male-only, with 

minimum size limits. Most stocks lack essential reproductive biological information to 

determine a spawning biomass index based on female reproductive potential. Hence, 

management advice is based on mature male biomass (MMB) as the measure of 

spawning potential (NPFMC, 2008).   

This paper investigates the effects of stage-2 weighting of size-composition and 

tagging data on trends in MMB estimated using a size-structured model applied to data 

for the eastern sub-stock of AI golden king crab. The effects are investigated for model 

scenarios defined by a range of natural mortality values (low to high), halving and 

doubling mean growth increment from the best estimate, and including or not including 

highly uncertain groundfish bycatch (trawl and fish pot) size-composition data. R0 



profiles (e.g. Wang et al., 2014) were also constructed to investigate the information 

content of various data components for abundance estimation. 

2. Materials and methods

2.1 Model and data sources

The size-structured model is outlined in Appendix A while the estimated parameters are

listed in Appendix B. Siddeek et al. (2015) provide full details of the model. The

assessment was implemented using AD Model Builder (Fournier et al., 2012). The data

sets included in the assessment are summarized in Table 1.  Each data set was weighted,

with arbitrarily large weights assigned to catch biomass (to ensure the model mimics the

observed removals closely), and sample variance-based weights for standardized observer

catch-per-unit-effort (CPUE) indices (Table 1).

2.2 Effective sample size for length composition 

The annual number of length measurements in each category of catch (retained, total, and 

groundfish crab bycatch) is extremely large (thousands) and heterogeneous among years. 

It is a common practice to use the number of sets/pot lifts or another measure of sampling 

effort as a starting point for sample sizes instead of the number of length measurements 

when applying integrated stock assessment methods (Thorson, 2014). Consequently, the 

initial (stage-1) effective sample sizes were set to the number of days fished by the 

sampled vessels for the retained and total catch size-composition data, but number of 

sampled trips for the groundfish crab bycatch. The groundfish fishery uses a variety of 

gears and hence it is difficult to use „day‟ as the initial effective sample size unit. We 

refer to the stage-1 effective samples sizes for the size-composition of the retained catch, 

total catch, and the groundfish crab bycatch for year t as 1,t 1,t,r T  , and 1,t

Tr respectively.

Based on the assumption that the size-composition data are a multinomial sample, 

McAllister and Ianelli (1997) provided an estimator for the stage-2 effective sample sizes 

(referred to as stage2a weights) based on the ratio of the theoretical variance of expected 

proportions to the actual variance of proportions,  

∑   ̂   ̂  

∑   ̂  
   (1) 

where  ̂    and  are the estimated and observed proportions of the catch during year t in 

size-class l, and  is the stage-2 effective sample size for year t. 

McAllister and Ianelli (1997) set the effective sample size for each size-composition 

data set for eastern Bering Sea yellowfin sole (Limanda aspera) as the arithmetic mean of  

  over years t (i.e., a year-invariant effective sample size) and iterated the model 

fitting, updating the effective sample sizes, until convergence occurred. Equation 1 

ignores correlation among the residuals for the catch proportions so likely overestimates 

effective sample sizes (Francis, 2011). Punt (this volume) suggests using the harmonic 

mean of       if the McAllister and Ianelli formula is used. A harmonic mean (constant) 

multiplier was consequently used to update the effective sample sizes at each iteration of 

model fitting until convergence occurred; i.e. 
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where 2, ,t i  is the stage-2 effective sample size for year t in iteration i ( 2, ,0 1,tt  ) and

 ̇ is the result of applying Equation 1. Convergence of the process of setting the stage-

2 effective sample sizes using Equation 2 was visually assessed by plotting          vs. 

 at the final iteration. 

Francis‟ (2011) mean-length based re-weighting method (i.e., Francis formula TA1.8, 

Punt, this volume) was considered as another way to re-weight the size-composition data 

(stage-2b) for iteratively re-weighting the initial (stage-1) effective sample sizes. Francis 

(2011)‟s procedure accounts for correlation among catch length proportion residuals 

using the formula: 
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where 
tl and

ˆ
tl are respectively the observed and model-predicted mean lengths for year

t: 
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is the mid-point of length-class i, 
ˆvar( l )t  is the variance of the predicted mean length 

for year t: 
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  is the effective sample size in year t.  Francis (in press) suggested that a good 

stopping criterion for the iteration process is when there is no appreciable change in the 

key outputs. Hence, we considered a stopping criterion of no appreciable change in W, 

terminal year MMB (Equation A10), and retained catch overfishing level (OFL, 

Equations A11a  A11c).    is related to the initial (stage-1) effective sample size 

according to: 

      (6) 

where is the effective sample size for year t in iteration i and is the Francis 

weight calculated using Equation 3 during iteration i. 

2.3 Weights for the tagging data 

Stage-1 weighting of the tagging data (i.e.,        in Equation A16 equal to 1) treats each 

recapture as an independent Bernoulli trial. Because overdispersion of data points cannot 

be ruled out, Punt et al. (this volume) propose a stage-2 weighting approach for tagging 

data based on the variability of errors in predicted mean length (sensu Francis, 2011). The 

stage-2 weighting of the tagging data for each time-at-liberty (there were six times-at-

liberty, 1–6 years; Siddeek et al., 2016; Punt et al., this volume) was therefore: 

{
  ̅   ̂̅

  ̂̅
}  (7)



where,  ̅ 
     is the observed mean recapture length for release length l,  ̂̅  is the predicted

mean recapture length for release length l, W is the likelihood weight, and  SE is the 

standard error. Thus, under stage-2 weighting of the tagging data,         is set to   in 

Equation A16. 

2.4 Growth increment 

Siddeek et al. (2016) describe how the size-transition matrix was calculated for AI golden 

king crab. It is a function of three components: 1) moult probability as a function of size, 

2) mean growth increment as a function of size, and 3) individual variability in growth

increment (Equations A5A7). The moult probability was modeled using a logistic

function, mean growth increment using a linear model, and the variability in the growth

increment using the normal distribution. One aspect of this study was to explore the

impact of changing the mean growth increment,    (Equation A6), on MMB and its

asymptotic CV.

2.5 Scenarios 

Table 2 lists the scenarios considered. The scenarios reflect assumptions regarding (a) the 

weighting for the size-composition and tagging data (either stage-1 or stage-2), (b) the 

value assumed for natural mortality [two steps incrementing the currently-assumed value 

for M of 0.18yr
-1

 (Zheng and Siddeek, 2016) by 0.06yr
-1

], (c) whether the parameters

defining the mean growth increment were pre-specified at half or double the values 

obtained when these parameters were estimated (with the best estimates of growth 

increment based on scenarios 7 to 12), and (d) whether or not the groundfish (trawl and 

fish pot) bycatch size-composition data were included in the assessment. The latter 

scenario was considered because the contribution of groundfish bycatch to total golden 

king crab catch is very small and the numbers of size measurements are also small, not 

covering all size-classes in every year (Siddeek et al., 2015). Hence some scenarios 

without groundfish bycatch size-compositions were considered assuming the groundfish 

selectivity to be 1.0 for all size-classes. Attempts to estimate groundfish selectivity 

produced imprecise parameter estimates and a curve that approached 1.0 for most size-

classes (Siddeek et al., 2015). 

2.6 Diagnostic measures 

The scenarios were summarized by the estimates of MMB, the CVs for the estimates of 

MMB and the confidence intervals for MMB. The confidence intervals of MMB were 

determined assuming lognormality (Burnham et al., 1987), i.e.:  

1.96 ( )

1.96 ( )

t

t

SE MMB

t t

SE MMB

t t

U MMB e

L MMB e




(8) 

where    is the upper limit and    is the lower limit of the mature male biomass in year t, 

and the standard error of the logarithm of MMB for year t is 2(1 )tn CV , where tCV

is the coefficient of variation of the estimate of MMB for year t.        

2.7 R0 profile 



Likelihood profiling of individual data components across a parameter has been argued to 

provide a way to evaluate the influence of data (Maunder, 1998, Francis, 2011, Maunder 

and Piner, this volume) and Wang et al. (2014) argue that such profiles can detect data 

conflicts. Likelihood profiles were developed for R0 for three of the scenarios (7, 19, and 

25), i.e. for a scenario where all parameters were estimated and when the growth 

increment was set to half or double the value for scenario 7. 

3. Results and discussion

Scenarios 1 to 18 and 31 to 42 were assigned to one set (hereafter referred to as “set 1”)

and scenarios 19 to 30 were assigned to a second set (hereafter referred to as “set 2”) for

discussion of results. All of the parameters were re-estimated for the set 1 scenarios,

whereas growth increments [at 103  and 138 mm CL respectively] were pre-specified

either half or double of those estimated for one of scenarios 7 to 12 and all of the

parameters were re-estimated subject to this constraint for the set 2 scenarios. Thus, the

set 2 scenarios explore the impact of growth on estimates and uncertainty of MMB under

stage-1 and stage-2 effective sample sizes.

Catch-rates are the key input data source that scale the biomass in the absence of 

fishery-independent surveys. All of the set 1 and part (half mean growth increment, green 

curves in the lower panel of Fig. 1) of the set 2 scenarios mimicked the catch-rate indices 

about equally well. However, the model-predicted catch-rate trends did not mimic the 

catch-rate data well when the mean growth increments were doubled (orange curves in 

the lower panel of Fig. 1). The model matches the catch-rate data better when the weight 

assigned to the catch-rate likelihood was increased five-fold (the black lines 

corresponding to scenarios 37 to 42; lower panel of Fig. 1). Overall, the fits indicate that 

all models were consistent with the catch-rate data, except when the mean growth 

increment was doubled.  

The convergence of the stage-2a effective sample sizes for the size-composition data 

for the McAllister and Ianelli method was verified for all scenarios using visual plots (see 

Supplementary Fig. 1 for examples of 1:1 plots for scenarios 9, 10, 39, and 40).  The 

convergence of the re-weighting (stage-2b) parameter, W, under Francis method is 

demonstrated for scenarios 5, 6, 11, 12, 17, 18, 35, 36, 41, and 42 in Supplementary 

Table 1. Convergence was achieved after 2 to 4 iterations. Francis re-weighting reduced 

the input effective sample sizes by ~ 15% 25%, ~50%, and ~55% for retained, total, and 

groundfish bycatch size-compositions, respectively, for scenarios 5, 6, 11, 12, 17, 18, 23, 

24, 29, 30, 35, 36, 41, and 42. On the other hand, the stage-2a method increased the input 

effective sample sizes for retained and total size-compositions by ~ 105% and ~10%, 

respectively, and reduced those for groundfish bycatch by ~45% for scenarios 3, 4, 9, 10, 

15, 16, 21, 22, 27, 28, 33, 34, 39, and 40. The MMB estimates under Francis re-weighting 

were lower compared to the stage-1 weights for the size-composition data except for the 

largest M (Table 2; Fig. 3). In addition, the estimates of MMB values increased with 

increased M.  

The median CVs of MMB were lower when stage-2a (i.e., McAllister and Ianelli 

method) weighting was used for the size-composition data instead of stage-1 or stage-2b 

(Francis method) weighting. This is expected given the stage-2a weighting process 

increased the weight assigned to the size-composition data. Increasing the weight 

assigned to the catch-rate likelihood five-fold also reduced the median CVs of MMB 

compared to the other scenarios (Fig. 2), as expected. Doubling the mean growth 



increments increased the median CVs of MMB and led to many outlying CVs (Fig. 2), 

further confirming that high growth increments are not consistent with the data for AI 

golden king crab.   

Stage-2 (2a and 2b) weighting of size-compositions and the tagging data did not 

appreciably affect the trends in MMB, although MMB was slightly lower for stage-2 

weighting of tagging data for most scenarios (Fig. 3).  Stage-2a and stage-2b weighting of 

the size-composition data narrowed the confidence intervals for MMB (Figs. 3 and 4).  

Though Francis method of re-weighting (stage-2b) has merit over the McAllister and 

Ianelli method of re-weighting (stage-2a) because it takes account of correlations in 

residuals among size-classes, both methods of re-weighting led to similar precisions and 

trends in MMB. It is possible that the use of robust multinomial model for fitting size-

composition data negates the effect of correlations in residuals among size-classes, but 

this needs further investigation.   

The MMB trends and their confidence intervals when the mean growth increment was 

halved were similar to those for the base scenarios (scenarios 7 to 12). Stage-2 weighting 

of the tagging data again led to slightly lower estimates of MMB when the mean growth 

increment was halved (Fig. 4 scenarios 19 vs. 20, 21 vs. 22, and 23 vs. 24). Nevertheless, 

the trends in MMB did not change dramatically when the tagging data were reweighted. 

The magnitude of MMB, but not the trends, reduced dramatically when the growth 

increment was doubled (Table 2 and Fig. 4 scenarios 25 vs. 26, 27 vs. 28, and 29 vs. 30), 

while stage-2 weighting of tagging data led to slightly higher estimates of MMB when 

the mean growth increments were doubled. However, as noted above, the fits for these 

scenarios are poor. 

The R0 profiles (Fig. 5) indicate that the primary determinant of R0 are the CPUE 

data, although the penalty on the recruitment deviations also has an important influence 

on determination of R0. There is no evidence for data conflicts for scenarios 7 (Figs 5a, b) 

and 19 (Figs 5c, d). However, the minimum of the profile for the length data is outside of 

the 95% confidence interval for the estimate of R0 for scenario 25 (Figs 5e, f), indicating 

a data conflict when the growth increments are doubled.  

In summary, changes to M, the weight assigned to the catch-rate likelihood, and 

omitting the groundfish bycatch size-composition data from the models did not 

substantially affect the trends in MMB, but the magnitude of MMB was lower and 

precision higher under stage-2 weighting of either size-composition or tagging data. 

Halving mean growth increment did not affect the magnitude or trend in MMB. 

However, doubling mean growth increment drastically reduced the MMB estimates, but 

not the trend. Based on the precision of MMB estimates, stage-2 weighting of size-

composition and tagging data is appropriate for assessments of the AI golden king crab. 

However, there is no clear choice between the McAllister and Ianelli (stage-2a) and the 

Francis (stage-2b) methods for re-weighting size composition data.     

Francis (2011) argues that the purpose of stage-2 weighting is to make the data 

weights more consistent with the model output.  Furthermore, Francis (in press) stresses 

that there is no „correct‟ method of weighting size-composition data with the multinomial 

likelihood because it does not allow for substantial correlations in size-composition data. 

We agree with both comments. Re-weighting of size-composition data, accounting for 

correlations may lead to mixed results, depending on the selected likelihood model. We 

demonstrate that using two methods for stage-2 weighting of size-composition data for 



the robust multinomial likelihood that there was not much of a difference between the 

results for the stage-2a method, which ignores correlations in residuals between size-

compositions, and the stage-2b method, which accounts for such correlations.  However, 

the MMB patterns shown in this paper may depend on this particular data. So this issue 

should continue to be explored for specific cases.   
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Appendix A: Key equations included in the stock assessment model for golden king 

crab  

Basic population dynamics 

The annual male abundances by size are modeled using the equation: 

  ∑       
   

      ̂     ̂      ̂     
                               (A1)

where i,tN  is the number of male crab in size-class i on 1 July (the start of the biological

year) of year t, i,tĈ , itD ,
ˆ , and ̂   are respectively the model-predicted pot (target) 

fishery retained, pot fishery discard dead, and groundfish fishery discard dead catches in 

size-class i during year t, 
,i jX  is the (i,j) element of the size-transition matrix,  yt  is 

elapsed time from 1 July to the mid–point of the fishery during year t, ,t jR is the 

recruitment to size-class j  at the start of year t, and M is (size- and year-independent) 

instantaneous rate of natural mortality.  

The catches by size-class are predicted using the equations: 

 ̂ (A2a) 

 ̂
 (  )

(A2b) 

  ̂ (A2c) 

where 
,t jZ is total fishery-related mortality on animals in size-class j during year t: 

(A3) 

tF is the full selection fishing mortality for the pot fishery during year t,   is the full 

selection fishing mortality for the groundfish fishery during year t,  is the total 

selectivity for animals in size-class j by the pot fishery during year t,  is the selectivity 

for animals in size-class j by the groundfish (trawl and fish pot) fishery, and     
  is the 

probability of retention for animals in size-class j by the pot fishery during year t. The 

mortality of discards for the pot fishery of 0.2yr
-1

 and the mortality of discards in

groundfish fishery bycatch of 0.65yr
-1

 (average of mortalities for the trawl (0.8yr
-1

) and

fish pot (0.5yr
-1

) components of the groundfish fishery) were assumed known (Siddeek et

al., 2015; Zheng and Siddeek, 2016). 

Selectivity and retention 

Selectivity and retention are both assumed to be logistic functions of size: 

[   ]
    (A4)  



where  and 50 are the parameters of the total selectivity / retention pattern, and    is the 

midpoint of size-class i. The superscripts “T” and “r” are used to indicate total and 

retention selectivity in Appendix B. Selectivity changes in blocks for the pot fishery: 

block 1: 1985/86 to 2004/05 and block 2: 2005/06 to 2015/16. Groundfish fishery 

selectivity is fixed at 1 for all size-classes (see the text and Siddeek et al., 2015 for 

justification). 

Growth matrix 

The growth matrix X is modeled as follows: 

{ 

(A5) 

where: 

{

∫  | 

∫  | 
 

 

∫  | 
 

, 

 | 
√ 

√ , and 

 is the mean growth increment for male crab in size-class i: 

.     (A6) 

a, b, and   are estimable parameters, and j1 and j2 are the lower and upper limits of the 

receiving length-class j (in mm CL),    is the mid-point of the contributing length-interval 

i, and n is the number of size-classes. The quantity    is the moult probability for size-

class i: 

 (  )
 (A7) 

where c and d are parameters. 

Catch-per-unit-effort (CPUE) 

The retained catch CPUE is predicted using the equation: 

    ̂ ∑ (  [   ̂    ̂      ̂ ])  (A8) 

where    is the catchability coefficient during the k-th time period (k=1: 1985/86 to 

2004/05; k=2: 2005/06 to 2014/15). 

Initial conditions 

The initial size-composition corresponded to a population at unfished equilibrium, i.e.: 

   (A9) 



where X is the growth matrix, S is a matrix with diagonal elements given by Me , I is the 

identity matrix, and R  is the product of average recruitment and relative proportion of 

total recruitment to each size-class. 

Mature male biomass (MMB) 

Mature male biomass at the (assumed) 15 February spawning time in the following year 

(NPFMC, 2008) is computed using equation 

 ∑  ̂  ̂   ̂ ( ) (A10)  

where    is 0.627, the proportion of a year from 1 July to 15 February, and wj is the 

weight of male crab in size-class j. 

Overfishing level mortality ( ) 

(a) if     ̅̅ ̅̅ ̅̅ ̅,

(A11a) 

(b) if     ̅̅ ̅̅ ̅̅ ̅  and     ̅̅ ̅̅ ̅̅ ̅,

(  
   ̅̅ ̅̅ ̅̅ ̅̅  )

(A11b) 

(c) if     ̅̅ ̅̅ ̅̅ ̅ ,

(A11c) 

where   is a constant multiplier of M (currently assumed to be 1),   is a parameter, and 

   ̅̅ ̅̅ ̅̅ ̅is the mean mature male biomass estimated for a selected time period (19852015)

and used as a            (NPFMC, 2008). The overfishing level directed fishery catch 

(OFL) is estimated using Equations (A2a) and (A2b) and the overfishing level groundfish 

bycatch is estimated  using Equation (A2c) with an average groundfish fishing mortality 

rate for 19891994. 

The likelihood function 

Size-composition data 

The size-composition data enter the objective function in the form of the robust normal 

for proportions negative log-likelihood (Fournier et al., 1998), i.e. generically: 

 
2

, ,

2
,

ˆ( )2

, 2
0.5 n(2 ) n exp 0.01t j t j

t j

P PLF

r t j
t j t j

LL



    

  
   (A12) 

where is the observed proportion of male crab in size-class j in the catch during year t, 

,
ˆ
t jP  is the model-estimate corresponding to 

,t jP , i.e.: 

 ̂  ̂ ∑  ̂    ;   ̂  ( ̂  ̂   ) ∑ ( ̂  ̂   )  ;  ̂   ̂ ∑   ̂     (A13) 



where  ̂   
  is the retained,  ̂   

  is the total, and  ̂   
   is the groundfish model-estimate of

retained catch proportions of male crab in size-class j in year t, 
2

,t j is the variance of

,t jP : 

*(  ) +
(A14) 

 is the effective sample size for year t, and n is the number of size-classes. 

Catch-rate indices 

The catch-rate indices are assumed to be lognormally distributed about the model 

predictions. The negative log-likelihood is: 

{  ∑ [  ( )] ∑
(       ̂ )

 (  
 ) }  (A15) 

where r

tCPUE is the standardized retained catch-rate index for year t, 
,r t is standard

error of the logarithm of r

tCPUE , and ̂ is the model-estimate corresponding to 

r

tCPUE , e is the extent of over-dispersion, c is a small constant to prevent zero values

(0.001), and  is the weight assigned to the catch-rate data (5 for scenarios 3742 

and 1 for the other scenarios). 

Tagging data 

Let 
, ,j t yV be the number of tagged male crab that were released during year t that were in 

size-class j when they were released and were recaptured after y years, and 
, ,j t y be the

vector of recaptures by size-class from the males that were released in year t that were in 

size-class j when they were released and were recaptured after y years. The log-likelihood 

corresponding to the multinomial distribution for the tagging data is then: 

∑ ∑ ∑ ∑    ̂   (A16) 

where  is the weight assigned to the tagging data for recapture year y, 
, , ,

ˆ
j t y i is the

proportion in size-class i of the recaptures of males that were released during year t that 

were in size-class j when they were released and were recaptured after y years: 

( )

, ,
ˆ [ ]T y j

j t y s Z  X
 (A17) 

 where   is a vector with 
, ,j t yV at element j and 0 otherwise, and S

T
 is the vector of

total selectivities for tagged male crab by the pot fishery. This log-likelihood function is 

predicated on the assumption that all recaptures are in the pot fishery and the reporting 

rate is independent of the size of crab.  

Penalty functions 

Penalties are imposed on the deviations of annual pot fishing mortality ( ) about mean 

pot fishing mortality, annual groundfish fishing mortality (   ) about mean groundfish 



fishing mortality, recruitment (  ) about mean recruitment, and growth increment (G, for 

a few scenarios): 

2

1 ( n n )F t
t

P F F  (A18) 

2

2 ( n n )Tr

Tr Tr

tF
t

P F F  (A19) 

2

3 ( n )R t
t

P    (A20) 

where   ,   , and      are penalty terms;         , and      are the weights assigned to pot 

fishing mortality (0.001), groundfish fishing mortality (0.001), and  recruitment (2.0), 

respectively. 



Appendix B: Pre-specified and estimated parameters of the population dynamics model. 

Parameter Number of parameters 

Initial conditions: 

Length-specific equilibrium abundance n (estimated) 

Fishing mortalities: 

Pot fishery deviations, tF 1985–2015 (estimated) 

Mean pot fishery fishing mortality, F 1 (estimated) 

Groundfish fishery deviations, Tr

tF 1989–2015 (the mean F for 1989 to 1994 

was used to estimate groundfish discards 

back to 1985 (estimated) 

   Mean groundfish fishery fishing mortality, TrF 1 (estimated) 

Selectivity and retention: 

Pot fishery total selectivity  2 (1985–2004; 2005+)  (estimated) 

Pot fishery total selectivity difference, 2 (1985–2004; 2005+) (estimated) 

Pot fishery retention  1 (1985+) (estimated) 

Pot fishery retention difference,  1 (1985+) (estimated) 

Groundfish fishery selectivity  fixed at 1 for all size-classes 

Growth: 

 Expected growth increment, a, b 2 (estimated) 

Variability in growth increment,  
Molt probability (size transition matrix with tag data) c 

Molt probability (size transition matrix with tag data) d 

1 (estimated) 

1 (estimated) 

1 (estimated) 

Natural mortality, M 1 (pre-specified) 

Recruitment: 

Number of recruiting length-classes 

Distribution to length-class, ,r r 

Median recruitment,  ̅

5 (pre-specified) 

2 (estimated) 

1 (estimated) 

Recruitment deviations, t 56 (1961–2016) (estimated) 

 Over fishing level pot fishery mortality, 1 (calculated using Equations A11a  

A11c) 

Fishery catchability, q 2 (1985–2004; 2005+) (estimated) 

Additional CPUE indices standard deviation, 1 (estimated) 

Likelihood weights (coefficient of variation) Pre-specified, varies among scenarios 



Table 1. Data used in the assessment for AI golden king crab, along with the weighting 

approaches. Note: 1985/86 refers to the fishery prosecuted between July 1985 and June 

1986. 

Data set Year range Data type(s) Likelihood / weight 

Retained pot catch 1985/86–2015/16 Catch in weight Log-normal, CV 0.032 

Retained pot catch 1985/86–2015/16 Size-composition Robust normal, Scenario-

dependent 

Total pot catch 1990/91–2015/16 Catch in weight (numbers 

derived from observer total 

catch CPUE and fishing 

effort and converted to 

weight) 

Log normal, CV scaled  to a 

maximum of  0.045 based on the 

annual number of pots sampled by 

observers 

Total pot catch 1990/91–2015/16 Size-composition Robust normal, Scenario-

dependent 

Groundfish  discarded 

bycatch 

1989/90–2015/16 Catch in weight Lognormal, CV 3.344  

Groundfish discarded 

bycatch 

1989/90–2015/16 Size-composition Robust normal, Scenario-

dependent 

Observer legal  size crab 

CPUE 

1991/92–2015/16 Annual CPUE indices with 

standard errors estimated 

using a  negative binomial 

GLM (Zuur et al., 2009) 

Log-normal with a CV
2
 of 

, where  is estimated 

from the GLM and  is an 

additional  (estimated) constant 

variance 

Tag recapture 1991, 1997, 2000, 

2003,  and 2006 

releases 

Release and recapture 

lengths and time-at-large 

up to 2012 recoveries 

Multinomial, Stage-1: weight = 1 

for each data point 

Stage-2: scenario-dependent 



Table 2. Model scenarios for eastern Aleutian Islands golden king crab.  The last two columns report the estimate of terminal year 

(2015) MMB and its estimated CV. Stage-2a: McAllister and Ianelli method; Stage-2b: Francis method 

Scenario Size-composition 

weighting 

method 

Tagging data 

weighting 

method 

Growth increment / size data Natural 

mortality 

 (M yr
-1

) 

Terminal 

MMB (t) 

Asymptotic CV of 

terminal MMB 

1 Stage-1 Stage-1 Estimated 0.18 9,526 0.161 

2 Stage-1 Stage-2 Estimated 0.18 9,267 0.165 

3 Stage-2a Stage-1 Estimated 0.18 9,090 0.180 

4 Stage-2a Stage-2 Estimated 0.18 8,888 0.183 

5 Stage-2b Stage-1 Estimated 0.18 9,105 0.164 

6 Stage-2b Stage-2 Estimated 0.18 8,779 0.168 

7 Stage-1 Stage-1 Estimated 0.24 11,471 0.166 

8 Stage-1 Stage-2 Estimated 0.24 11,071 0.170 

9 Stage-2a Stage-1 Estimated 0.24 11,608 0.176 

10 Stage-2a Stage-2 Estimated 0.24 11,210 0.178 

11 Stage-2b Stage-1 Estimated 0.24 10,894 0.168 

12 Stage-2b Stage-2 Estimated 0.24 10.398 0.171 

13 Stage-1 Stage-1 Estimated 0.30 13,470 0.170 

14 Stage-1 Stage-2 Estimated 0.30 12,911 0.173 

15 Stage-2a Stage-1 Estimated 0.30 13,696 0.181 

16 Stage-2a Stage-2 Estimated 0.30 13,377 0.177 

17 Stage-2b Stage-1 Estimated 0.30 13,923 0.182 

18 Stage-2b Stage-2 Estimated 0.30 13,177 0.184 

19 Stage-1 Stage-1 Half mean growth increment (based on scenario 7) 0.24 12,161 0.157 

20 Stage-1 Stage-2 Half mean growth increment (based on scenario 8) 0.24 12,595 0.156 

21 Stage-2a Stage-1 Half mean growth increment (based on scenario 9) 0.24 12,168 0.159 

22 Stage-2a Stage-2 Half mean growth increment (based on scenario 10) 0.24 12,156 0.154 

23 Stage-2b Stage-1 Half mean growth increment (based on scenario 11) 0.24 11,906 0.165 

24 Stage-2b Stage-2 Half mean growth increment (based on scenario 12) 0.24 12,079 0.158 

25 Stage-1 Stage-1 Double mean growth increment (based on scenario 7) 0.24 9,592 0.285 

26 Stage-1 Stage-2 Double mean growth increment (based on scenario 8) 0.24 3,701 0.200 

27 Stage-2a Stage-1 Double mean growth increment (based on scenario 9) 0.24 4,019 0.207 

28 Stage-2a Stage-2 Double mean growth increment (based on scenario 10) 0.24 3,309 0.220 



Table 2 continued 

29 Stage-2b Stage-1 Double mean growth increment (based on scenario 11) 0.24 3,649 0.192 

30 Stage-2b Stage-2 Double mean growth increment (based on scenario 12) 0.24 4,056 0.202 

31 Stage-1 Stage-1 Groundfish bycatch size-composition data excluded 0.24 11,414 0.169 

32 Stage-1 Stage-2 Groundfish bycatch size-composition data excluded 0.24 11,123 0.171 

33 Stage-2a Stage-1 Groundfish bycatch size-composition data excluded 0.24 11,499 0.175 

34 Stage-2a Stage-2 Groundfish bycatch size-composition data excluded 0.24 11,074 0.176 

35 Stage-2b Stage-1 Groundfish bycatch size-composition data excluded 0.24 11,591 0.169 

36 Stage-2b Stage-2 Groundfish bycatch size-composition data excluded 0.24 11,121 0.171 

37 Stage-1 Stage-1 Estimated (five-fold weight on catch-rate likelihood) 0.24 12,525 0.103 

38 Stage-1 Stage-2 Estimated (five-fold weight on catch-rate likelihood) 0.24 12,227 0.109 

39 Stage-2a Stage-1 Estimated (five-fold weight on catch-rate likelihood) 0.24 14,234 0.097 

40 Stage-2a Stage-2 Estimated (five-fold weight on catch-rate likelihood) 0.24 13,694 0.102 

41 Stage-2b Stage-1 Estimated (five-fold weight on catch-rate likelihood) 0.24 11,771 0.103 

42 Stage-2b Stage-2 Estimated (five-fold weight on catch-rate likelihood) 0.24 11,251 0.109 



Figure Titles 

Figure 1.  Comparison of the observed (open circles with exp(+/- 2 √         
  )), and 

the model-predicted CPUE indices (colored solid lines) for scenarios (Sc) 1 to 18 (upper 

panel) and 7,  and 19 to 42 (lower panel). The results for Scenario 7 curve are included in 

lower panel for comparison. 

Figure 2. Box plots of the coefficient of variation (CV) of the among-year variation in 

mature male biomass (MMB) for scenarios (Sc) 1 to 42. 

Figure 3. Comparison of the trends in mature male biomass (MMB with log-normal 

confidence intervals based exp(+/- 2 √         
  ))  for scenarios (Sc)  1 to 18 and 31 

to 42. Pairwise plots compare MMB trends between stage-1 (solid curves with shaded 

95% confidence intervals) and stage-2 (dashed curves with dotted lines indicating 95% 

confidence intervals) weighting of the tagging data.  

Figure 4. Comparison of the trends in mature male biomass (MMB with log-normal 

confidence intervals based exp(+/- 2 √         
  )) for scenarios (Sc) 19 to 30 (i.e., 

changes to the assumptions regarding the mean growth increment). Pairwise plots 

compare MMB trends between stage-1 (solid curves with shaded 95% confidence 

intervals) and stage-2 (dashed curves with dotted lines indicating 95% confidence 

intervals) weighting of the tagging data.  

Figure 5. Total negative log-likelihood and negative log-likelihood by data component as 

a function of log(R0) for the base model [scenario 7, plots (a), and (b)], and scenarios in 

which the growth increment is set to half [scenario 19, plots (c), and (d)], and double 

[scenario 25, plots (e), and (f)]  the base model  estimates. The negative log likelihood 

values were zero adjusted. The red horizontal line denotes the cut-off for a 95% 

confidence interval for log(R0). 

Supplementary figure: 

Supplementary Figure 1.  Predicted i-1
th

 step input effective sample size versus the i-1
th

step stage-2 effective sample size for retained catch, total catch, and groundfish bycatch 

size-composition under McAllister and Ianelli method for scenarios (Sc) 9, 10, 39 and 40. 

The red line is the 1:1 line. 
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